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Project Motivation
● Geothermal exploration and production are challenging, expensive and 

risky
● Diverse datasets available (public and proprietary; satellite, airborne surveys, 

vegetation/water sampling, geological, geophysical, etc.)

● How to utilize these datasets for geothermal exploration unknown due to
○ imperfect understanding of how physical processes impact 

subsurface conditions and available observations
● ML is here to help … (discover how geothermal conditions are represented in 

these datasets)
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Project Goals
● Apply ML to discover and extract new (unknown/hidden) geothermal 

signatures in existing large datasets

● Categorize geothermal data and generate labels

● Identify high-value data acquisition strategies

● Develop a general open-source cloud-based ML framework for 
geothermal exploration

● Fuse big data and multi-physics models

● Test & validate that ML methods can discover hidden geothermal 
signatures
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Project Partners

● LANL
● Stanford University
● Google
● Descartes Labs
● University of Texas-Austin (Bureau of Economic Geology)
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Machine Learning (ML) methods
● Supervised
● Unsupervised
● Physics-informed
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Supervised ML
● learns everything from data
● requires prior “labeling” (i.e., knowledge about the processed data)
● cannot discover/learn something that is not known already
● requires large training datasets
● highly impacted by noise
● black box analyses
● neural networks are difficult to interpret
● can recognize cats and dogs but cannot recognize horses if not pre-trained
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Unsupervised ML
● extracts information (features/signatures) from data automatically
● applicable for categorization and prediction
● produces unbiased analyses not impacted by data labeling, 

subject-matter-expert opinions, and physics assumptions
● still, physics constraints/relationships can be added
● identifies features that distinguish images of animals (e.g., cats, dogs, horses, 

etc.)
● categorizes processed data and subject-matter-experts can identify (“label”) 

animals (geologic features)
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Physics-informed ML
● learns from data but includes preconceived science knowledge
● physics information embedded in the ML framework or added as penalties
● physics-informed neural networks are problem specific
● needs SME inputs related to the analyzed problem
● increases efficiency, accuracy, and robustness
● requires differentiable programming (       )
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SmartTensors 
● SmartTensors framework incorporates novel LANL-developed patented ML 

methods and tools based on matrix/tensor factorization

● SmartTensors can perform unsupervised and physics-informed ML

● Non-negativity and physics constraints can be added ⇒ provide explainability

● SmartTensors extensively tested & validated

● … and applied for diverse problems (from COVID-19 to wildfires and text mining)

● Can efficiently process large datasets (TB's) utilizing GPU's & TPU's 

● Coded in        ; orders of magnitude faster than Python, 
R and MATLAB;

● SmartTensors framework recently 
nominated for R&D 100 award
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GeoThermalCloud + SmartTensors 
● GeoThermalCloud incorporates SmartTensors ML tools

● GDR: https://gdr.openei.org/submissions/1297
● GitHub:

○ https://github.com/SmartTensors 
○ https://github.com/SmartTensors/GeoThermalCloud.jl
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NMF vs PCA 
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Lee & Seung, 1999

PCA: Principal Component Analysis

NMF: Nonnegative Matrix Factorization

Nonnegativity 
constraint provide 
meaningful and 
interpretable results
(AND sparsity)
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Nonnegative matrix factorization
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Nonnegative tensor factorization
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Machine Learning for unmixing waters 
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Machine Learning for unmixing waters 
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Machine Learning for unmixing waters 
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Machine Learning for unmixing waters 
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Vesselinov et al, 2018, 
Nonnegative tensor 
factorization for contaminant 
source identification. J. 
Contam. Hydrol.

Vesselinov et al, 2016, 
Contaminant source 
identification using 
semi-supervised machine 
learning, J. Contam. Hydrol.
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Nonnegative matrix factorization
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Nonnegative tensor factorization
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Nonnegative tensor factorization
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Datasets analyzed
● Analyzed datasets include geothermal, 

geophysical, geomechanical, 
geochemical, geological attributes

● Covering various regions/conditions: 
NV, UT, CA, OR, ID, NM, TX, HI

● Synthetic datasets developed and 
analyzed

○ EGS energy production at 
UtahForge site
(ML analyses using LANL’s code GeoDT 
to optimize energy production)

○ SWNM geothermal systems
(ML analyses using LANL’s code 
PFLOTRAN to characterize heat source)
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GeoDT Modeling
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GeoDT is a novel LANL developed multi-physics modeling tool (Frash, 2021) to 
rapidly predict the performance of geothermal energy systems
GeoDT captures:

1. State of stress
2. Dynamic geofluid production
3. Natural fractures 
4. Hydraulic fractures
5. Induced seismicity
6. Stress-dependent fracture properties
7. Well system design
8. Uncertainty quantification
9. Site specific settings (e.g., UtahFORGE & EGS Collab)

 GeoDT integrated with GeoThermalCloud to find optimal behavioral trends

Inject

Produce
Fracture sets based 

on FORGE data

Produce

Power output



Los Alamos National Laboratory

GeoDT Modeling

23

● Key Research Questions for the GeoThermalCloud+GeoDT analyses:
○ Find relations between production transients and site data
○ Identify site parameters that increase energy production
○ Characterize the impact of state of stress on the geothermal production
○ Develop ML model to efficiently predict the system behavior

● GeoDT predicts geothermal performance based on attainable site data
● GeoThermalCloud “separates” impacts of physics processes in model 

outputs to identify multivariate factors that control geothermal production

GeoDT NMFk
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GeoDT Model Parameters
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Stress effects

Thermal effects

Fracture geometry

Well design

Combined effects

Strength effects

Note: this is a partial list of up 
to ~100 site/reservoir 

parameters that can be 
analyzed by GeoDT
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GeoDT Model Outputs
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 ~2,000 realizations
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GeoDT Model Outputs
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 ~2,000 realizations
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GeoDT: ML results
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Well spacing + other 
attributes that can 

improve production

Stress + other attributes that 
can impede production

Well orientation + other 
attributes that can 
impede production

System+reservoir attributes 
that can impede production
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GeoDT: ML results
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Well spacing + other 
attributes that can 

improve production

Stress + other attributes that 
slightly can impede production

Well orientation + other 
attributes that can 
impede production

System+reservoir attributes that 
can improve production
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GeoDT: ML results
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Well spacing and well orientation are 
both crucial attributes for increasing 

energy production

All three components of the stress 
tensor strongly impact production

Well diameter is more important for 
production than originally anticipated

System design interplays with 
reservoir properties (elastic, heat 

capacity, gradient, etc.) in optimizing 
production

As to be expected, rock temperature 
has a crucial role for production
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GeoDT: ML results
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GeoDT: ML results
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Well spacing is a 
strong factor for 

induced seismicity

System+reservoir 
properties are strongly 

linked to leakoff risk

Well orientation 
strongly controls 

interaction of natural 
and stimulated 

fractures 

Stress is interlinked in 
a complex way to 

system performance
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GeoDT: ML results
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Well spacing is a strong factor 
for induced seismicity

System+reservoir properties 
are strongly linked to leakoff 

risk

Well orientation strongly 
controls interaction of natural 

and stimulated fractures

Stress is interlinked in a 
complex way to system 

performance
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• Great Basin includes multiple geothermal 
reservoirs ranging from low to high 
temperature

• Great Basin has huge geothermal potential

• Further explorations require better 
understanding of local/regional spatial 
patterns in various geothermal-related 
attributes observed throughout the Great 
Basin region

• > 14,000 locations at which 
geothermal-related data are available

Great Basin

Study area with 14,341 data points



Los Alamos National Laboratory 34

• Geochemical data are easier to collect 
compared to other geothermal-related 
attributes

• Geochemistry can be applied to infer 
geothermal conditions (e.g., reservoir 
temperatures, conditions, reservoir 
boundaries, and heat source type)

• Geochemistry also captures water / rock 
interactions and water mixing

Study area with 14,341 data points

Great Basin: Why geochemistry
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● 18 data 
attributes 

● 14,341 
locations

● Data gaps

 

Great Basin: Data Attributes
Attribute Missing (%)

Groundwater temperature (℃) 2.6
Quartz geothermometer (℃) 39.1
Chalcedony geothermometer (℃) 39.1
pH 35.0
TDS (total dissolved solids) (PPM) 87.8
Al3+ (PPM) 90.5
B+ (PPM) 61.7
Ba2+ (PPM) 82.4
Be2+ (PPM) 88.5
Br- (PPM) 86.4
Ca2+ (PPM) 33.6
Cl- (PPM) 29.2
HCO3

- (PPM) 76.1
K+ (PPM) 40.8
Li+ (PPM) 80.3
Mg2+ (PPM) 34.8
Na+ (PPM) 38.2
𝛅18O  (‰) 89.7
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Signals and attributes

● A: Low-temperature resource
○ TDS, Br, B, δO18

● B: High-temperature resource
○ Quartz and Chalcedony 

geothermometers, pH, Al, Be

● C: Medium-temperature resource
○ Mg, Ca

Great Basin: ML extracted Geothermal Signatures
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● Our ML analyses also estimate the 
spatial distribution of hidden 
geothermal signatures

Great Basin: Geothermal Signatures

● A: Low-temperature resource
○ TDS, B, Br, δO18

● B: High-temperature resource
○ Al, Be, Quartz and Chalcedony 

geothermometers

● C: Medium-temperature resource
○ Mg, Ca
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Great Basin: Geothermal Signatures
● Our ML analyses also estimate the 

spatial distribution of hidden 
geothermal signatures

● A: Low-temperature resource
○ TDS, B, Br, δO18

● B: High-temperature resource
○ Al, Be, Quartz and Chalcedony 

geothermometers

● C: Medium-temperature resource
○ Mg, Ca
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Great Basin: Geothermal Signatures
            Signature A (low T)                                                                 Signature B (high T)                                                              Signature C (mid T)                                                 !                   
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Great Basin: Geothermal Signatures

             B                        δO18                     Br                      TDS                            Al                       Be                 Chalcedony           Quartz                       Mg                        Ca          !                   

            Signature A (low T)                                                                 Signature B (high T)                                                              Signature C (mid T)                                                 !                   
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Great Basin Geothermal Predictions
TemperatureData input ML output
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Great Basin Geothermal Predictions
TemperatureData input ML output
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Great Basin Geothermal Predictions
ChalcedonyData input ML output
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Great Basin Geothermal Predictions
BData input ML output
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Great Basin Geothermal Predictions
delO18Data input ML output
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● Developed ML model is also applied to predict temperature based on all other 
attributes

● Artificial noise (mimicking measurement errors) at different levels is added
● Accuracy of the blind temperature predictions are evaluated (r2)
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Great Basin ML predictive uncertainties

Training 

percent

Noise level [%]

100% 50% 20% 10%

90% 0.675 0.823 0.939 0.976

80% 0.616 0.769 0.919 0.951

50% 0.574 0.749 0.870 0.917

20% 0.565 0.714 0.838 0.887

10% 0.441 0.623 0.755 0.876
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Brady site, Nevada

47
Study area: 47 wells Data attributes of one of the production wells
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Brady site, Nevada
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● Analyzed dataset is 
a 3D tensor:
47 wells
14 attributes
750 vertical depths (1 m)

● 4 geothermal signatures 
extracted

● A: Stresses, Inverse 
distance from faults

● B: Stratigraphy unit 
thickness, Faulting, 
Dilation

● C: Fault density, fault 
intersection density

● D: Good lithology

A  B  C  D

Faulting
Fault curvature
Fault dilation tendency
Fault slip tendency
Inverse distance from faults
Fault density
Fault intersection density
Dilation
Normal stress
Coulomb shear stress
Inverse distance from contacts
Stratigraphic unit thickness
Good lithology
Modeled temperature

Faults

Fault
network

Stress & Strain

Stratigraphy

Temperature
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Brady site, Nevada ML identified 
well types

Signature A: injection wells

Signature B: production wells

Signatures B and D:  dry wells 
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(Paper submitted in c
ollaboration with USGS)

Brady site
Nevada

50

Attribute associations projected 
by Signatures C and A

Extracted hidden 
geothermal signatures 
B & A separate 
production and 
injection wells
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Brady site: State of Stress Impacts
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● Coulomb shear traction 
estimated at 1000 m 
depth

● Dark colors represent 
high Coulomb shear 
traction on optimally 
oriented normal faults as 
a result of slip

● Aspect ratio of 2:1 most 
probably characterizes 
the state of stress at the 
Brady case

Increasing step-over width relative to step-over length

Increasing step-over length relative to step-over width
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Brady site: State of Stress Impacts
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1:1     1:2     1:3    1:4     2:1     3:1     4:1

Relative Improvement in Reconstruction Error

1:1 1:2 1:3 1:4 2:1 3:1 4:1

156 155 237 243 262 0 140

● Stress ratios at the site are unknown

● A series of stress ratios are modeled and after that 
analyzed using our ML methods

● Based on reconstruction errors and attribute 
categorizations, the ML blindly identified the 2:1 
stress ratio as the most probable to represent site 
conditions

● In fact, this is the most probable stress ratio at the 
site (2:1) based on previous studies
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Utah Forge

53

● Data from 102 locations

● 22 attributes including satellite 
(InSAR), geophysical (gravity, 
seismic), geochemical, and 
geothermal attributes

Utah Forge Site
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Utah Forge
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● Four hidden geothermal 
signatures are extracted

● Signatures A and B are 
related to favorable 
geothermal conditions

● However, Signatures A and 
B are very different

● Signature A key attributes 
are gravity, seismic, and 
specific geochemical 
species

● Signature A is NOT 
detected by BHT, gradient, 
head flow, and shallow 
temperature data
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Utah Forge: Prospectivity maps
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Utah Forge: Prospectivity maps
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● In Phase 3 of the FORGE project, 
an additional well will drilled

● Areas with high-prospectivity of 
Signatures A and B should be 
prefered for drilling
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Utah Forge: Heat flux maps
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Data input ML output
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SWNM geothermal exploration
Southwest NM
(Stanford & GRC, 2020)
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SWNM dataset

59

X = 44 x 18
B+ concentration
Li+ concentration
Drainage density
Springs density
Hydraulic gradient
Precipitation
Gravity anomaly
Magnetic intensity
Seismicity
Silica geothermometer 
Heat flow
Crustal thickness
Depth to the basement
Fault intersection density
Quaternary fault density
State map fault density
Volcanic dike density
Volcanic vent density
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SWNM geothermal signatures

60

X = W x H

W: attribute matrix

H: location matrix

W H
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SWNM physiographic provinces
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Physiographic associations:

Signature A: Southern volcanic field

Signature B: Rio Grande Rift

Signature C: Colorado Plateau

Signature D: Central Rio Grande Rift

Signature E: Northern volcanic field
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SWNM signature interpretation

62

Signature B:
Gravity anomaly 
Depth to the basement
Silica geothermometer
B+ and Li+ concentrations
Magnetic intensity
Quaternary fault density
Heat flow

Signature E:
Precipitation
Hydraulic gradient
State map fault density
Drainage density
Silica geothermometer

Signature A:
Li+ concentration
Drainage density
Magnetic intensity
Volcanic dike density
Gravity anomaly

Signature C:
Crustal thickness
Magnetic intensity
B+ and Li+ concentrations
Drainage density

Signature D:
Quaternary fault density
Fault intersection density
Seismicity
State map fault density
Spring density
Hydraulic gradient
Drainage density
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SWNM signature interpretation

63

Signature B:
Deep heat flow
Gravity anomaly 
Depth to the basement
Silica geothermometer
B+ and Li+ concentrations
Magnetic intensity
Quaternary fault density
Heat flow

Signature E:
Vertical hydraulics
Precipitation
Hydraulic gradient
State map fault density

Signature A:
Shallow heat flow
Li+ concentration
Drainage density
Magnetic intensity
Volcanic dike density
Gravity anomaly

Signature C:
Thick crust
Crustal thickness
Magnetic intensity
B+ and Li+ concentrations

Signature D:
Tectonics
Quaternary fault density
Fault intersection density
Seismicity
State map fault density
Spring density
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SWNM geothermal signatures

64

Signature A:Southern volcanic field
Shallow heat flow

Signature B:Rio Grande Rift
Deep heat flow

Signature C:Colorado Plateau
Thick crust

Signature D:Central Rio Grande Rift
Tectonics

Signature E:Northern volcanic field
Vertical hydraulics
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SWNM geothermal signatures

65

● 2, 3, 4, 5, and 8 signatures also 
can explain the dataset

● 5 signatures are optimal

● 2, 3, and 4 signatures are 
undefitting

● 8 signatures are overfitting

● Nevertheless, all results 
provide data categorization 
consistent with regional 
physiographic provinces  
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Conclusions:

66

● GeoThermalCloud is developed for ML analyses of geothermal 
datasets

● Our ML methods have successfully extracted hidden geothermal 
signatures 

● We were able to provide physical explanation of these signatures
● ML was applied to label datasets related to the geothermal signatures
● GeoThermalCloud capabilities were demonstrated on 9 field and 2 

synthetic datasets
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Conclusions:
● Great Basin: Low-, medium-, high-temperature hydrothermal systems, 

their dominant characterization attributes, and their spatial 
distribution identified using geochemistry data

● Brady site: Successfully defined relations between well types 
(production, injection, non-production) and attributes characterizing 
site conditions (faulting, geology, state of stress)

● Utah FORGE: Analyzed site prospectivity and proposed drilling 
location for future geothermal field exploration

● SWNM: Identified low- and medium-temperature hydrothermal 
systems, found dominant attributes and spatial distribution for each 
hydrothermal system; demonstrated blind predictions of provinces
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Conclusions:
● Tularosa Basin: Identified low-, medium-, and high-temperature 

hydrothermal systems, found dominant attributes and spatial 
distribution for each hydrothermal system

● Hawaii: Analyzed four islands data separately and identified low-, 
medium-, and high-temperature hydrothermal systems

● Tohatchi Springs: Identified low- and medium-temperature 
hydrothermal systems, found dominant attributes and spatial 
distribution for each hydrothermal system

● West Texas: Subdivided the region into three areas; the western 
portion has higher geothermal potential at a lower depth than the 
middle and eastern portions
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Conclusions:
● EGSCollab: Field experiment data processed to extract dominant 

temporal patterns observed in 49 data streams; erroneous 
measurement attributes and periods automatically identified; 
interrelated data streams automatically identified
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Conclusions:
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● GeoDT multiphysics code is developed to rapidly predict the 
performance of geothermal energy systems

● GeoDT predicts the impact of attainable site data on geothermal 
performance 

● GeoThermalCloud “separates” the impacts of different physical 
processes in the GeoDT model outputs

● GeoDT+GeoThermalCloud capabilities demonstrated on a synthetic 
dataset
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GeoThermalCloud:
Slides summarizing more geothermal studies 
● Tularosa Basin
● Tohatchi hot springs
● West Texas
● Hawaii Islands
● EGSCollab

71



Tularosa Basin: Results

8/12/20   |   72Vesselinov, et al.

• Tularosa basin (South New 
Mexico) has favorable 
geological structures for 
geothermal exploration

• We investigate a total of 21 
attributes collected for PFA 
[https://gdr.openei.org/submissions/928]

• Signature C defines the 
hidden potential geothermal 
resources 

• Signature C key attributes are 
heat flow, SiO2, silica 
geothermometer and fault 
density

Hidden signals

Clustered points represent data locations
A  B  C  D

Spatial distribution of signatures

Signatures
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Hidden signals

Tohatchi hot spring area, NM

(supported by NM SBA, LANL) 73
A   B  C  D

Spatial distribution of signatures

• Tohatchi hot springs in NM 
are favorable for hot dry rock 
geothermal exploration 

• We investigated 19 attributes 
observed at 41 wells

• Signature C defines the 
hidden potential geothermal 
resources 

• Signature C key attributes are 
pH, Li+ HCO3

-, F+, 
Quartz-water-vapor 
geothermometer and Na-K-Ca 
geothermometer
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Hawaii 
Islands

74
Hidden signatures

Spatial distribution of signatures

 B   C   A    D

Signatures
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Hawaii Islands

75

Hidden signatures

● Four geothermal 
signatures characterize 
Hawaii islands

● Signatures B and D 
relate with 
groundwater 
temperature 

● Their dominant 
attributes are:
○ pH
○ δ18O
○ δ2H
○ Silicate

Spatial distribution of signatures
 B   C   A    D

Signatures
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West Texas

76

● Bottomhole temperature to 
depth ratio is higher in the 
western vs eastern areas 

● Thermal conductivity is 
marginally higher in the west 
portion

● Temperature to depth ratio and 
Thermal conductivity 
demonstrate that western area 
has potential geothermal 
systems at a lower depth than 
the middle and eastern areas

● In Phase II, we will divide the 
dataset and perform transfer 
learning

Area with both geothermal and 
sparse geochemistry 
attributes

Thermal conductivity

Area with only
geothermal 
attributes

Temperature to depth ratio
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EGSCollab: Field experimental data

77

● Hourly field data collected during field experiments are analyzed
● Measurement interrelation are hard to understand (49 attributes processed)
● Some measurements are erroneous due to equipment failures
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EGSCollab: Field experimental data
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EGSCollab: Field experimental data
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EGSCollab: ML results
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● 5 signatures “represent” the field experiment

A: injection flow
B: injection pump rate
C: production
     temperature/pressure
D: mixed processes
E: production flow rate
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EGSCollab: ML results
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● Each signature is related 
to a series of measurement attributes

● Importance (weights) of attributes 
are evaluated

● Interrelated measurement 
attributes are identified 
(i.e., representing similar processes)

● Erroneous measurement attributes 
are identified (e.g., “Production 
Interval Temperature”)
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EGSCollab: Interrelated measurements
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Signature A
Quizix Cumulative Volume Pumped                         0.919
Azbil Differential Pressure between I&P                 0.707
Injection Bottomhole Pressure                           0.664

Signature B
Triplex RPM Calc Flow                                   1.0
Triplex RPM                                             1.0
Injection Alicat Air Pressure                           0.921

Signature C
Recirc Pressure                                         1.0
Recirc Flow rate                                        0.994

Signatures / Measurement attributes Weights
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EGSCollab: Interrelated measurements
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Signature D
Water Tank Outlet Temperature                           1.0
Injection Flow Turbine HF Corrected                     0.988
Injection Flow HP Turbine-Low Flow Temp Corrected       0.988
Production Bottomhole Pressure                          0.957
PSB Collar Flow                                         0.943
Production Interval Outlet Temperature                  0.918
Quizix Pressure                                         0.874
Injection Interval Temperature                          0.86

Signature E
Production Lower Packer Element Pressure                0.941
Production Upper Packer Element Pressure                0.94

Signatures / Measurement attributes Weights
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GeoThermalCloud:
Slides summarizing more about methodology 
● NMFk
● NTFk
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Nonnegative matrix factorization
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Nonnegative matrix factorization
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Nonnegative matrix factorization
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Nonnegative matrix factorization
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Nonnegative tensor factorization
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Nonnegative tensor factorization
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Nonnegative tensor factorization
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